Printed Pages - 8

328453 (28)
 BE (4 ${ }^{\text {th }}$ Semester)

Examination, Nov.-Dec., 2021

Branch : Et \& T

ANALOG ELECTRONICS (NEW)

Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28

Note : Part (a) of each question is compulsory. Attempt
any two parts from part (b), (c) \& (d) of each question. Part (a) is of 2 marks and Part (b), (c)
\& (d) are of 7 marks each. Symbols have their usual meanings.
Q. 1. (a) What is biasing problem in a common collector circuits and how this problem is overcome ? (In brief).
(b) The transistor amplifier shown in figure uses a transistor whose h-parameters are given as :
$h_{\text {ie }}=1.1 \mathrm{~K}, \mathrm{~h}_{\mathrm{fe}}=50, \mathrm{~h}_{\mathrm{re}}=2.5 \times 10^{-4}$ and h_{oe}
$=24 \mu \mathrm{~A} / \mathrm{N}$. Calculate $\mathrm{A}_{\mathrm{l}}=10 / /_{i} ; \mathrm{A}_{\mathrm{v}} ; \mathrm{A}_{\mathrm{vs}}$, and R_{i}.

Figure (1)
(c) For the circuit shown in figure (2), verify that
the modified h-parameters are :
$h_{i e}^{\prime}=h_{i e}+\frac{\left(1+h_{f e}\right) R_{e}}{1+h_{o e} R_{e}}$ and $h_{r e}^{\prime}=\frac{h_{r e}+h_{o e} R_{e}}{1+h_{o e} R_{e}}$

(3)

Figure (2)
(d) What is a Darlington pair ? Write its main
characteristics. Derive expression for current
gain A_{l} and input resistance R_{i} for a

Darlington Pair.
Q. 2. (a) Why h-parameter model is not used to model BJT at high frequencies ?
(b) For hybrid- π model derive expression for:

- conductance $g_{b^{\prime} e}$
- feedback conductance $g_{b^{\prime}}$
- base spreading resistance $\mathrm{r}_{\mathrm{b} \mathrm{b}^{\prime}}$

(4)

- output conductance $g_{c e}$; in terms of h-parameters
(c) The hybrid- π parameter of the transistor used in the circuit shown in figure (3) are g_{m}
$=50 \mathrm{mAN}, \mathrm{r}_{\mathrm{b}^{\prime} \mathrm{e}}=1 \mathrm{~K} \Omega, \mathrm{r}_{\mathrm{b}^{\prime} \mathrm{c}}=4 \mathrm{M} \Omega, \mathrm{r}_{\mathrm{ce}}=80$
$\mathrm{K} \Omega, \mathrm{C}_{\mathrm{c}}=3 \mathrm{pF}, \mathrm{C}_{\mathrm{e}}=100 \mathrm{pF}$ and $\mathrm{r}_{\mathrm{bb}}=100 \Omega$.
Find (i) Upper 3 dB frequency of current gain
$A_{i}=I_{L} I_{i}$ (ii) The value of voltage gain $\left|A_{v s}\right|=$
$\left|V_{0} N_{s}\right|$ at frequency of part (i).

Figure (3)
(d) Derive the expression for CE gain-bandwidth product for voltage and current is respectively, as :

$$
\begin{aligned}
& \left|A_{V s o} f_{H V}\right|=\frac{f_{T}}{1+2 \pi f_{T} C_{C} R_{L}} \frac{R_{L}}{\left(R_{s}+T_{b b^{\prime}}\right)} \\
& \left|A_{\text {Iso }} f_{H I}\right|=\frac{f_{T}}{1+2 \pi f_{T} C_{C} R_{L}} \frac{R_{S}}{\left(R_{s}+T_{b b^{\prime}}\right)}
\end{aligned}
$$

Q. 3. (a) The dynamic transfer characteristic curve for a given transistor is :
$i_{C}($ in $m A)=50 i_{b}+1000 i_{b}^{2}$ where $i_{b}=50 \cos$
2π (100)t (in mA). Calculate the percent harmonic distortion.
(b) Calculate C_{C} for $\mathrm{f}_{\mathrm{L}}=15 \mathrm{~Hz}$ for circuit shown in figure (4).

Figure (4)

(6)

(c) For the cascaded amplifier shown in figure
(5), calculate the overall upper 3 dB frequency. Assume that the cascaded stages are non-interacting.

Figure (5)
Given $A_{\mathrm{v} 1}=\frac{A_{\mathrm{vo} 1}}{1+\frac{\mathrm{s}}{\omega_{\mathrm{H} 1}}}$ and $A_{\mathrm{v} 2}=\frac{A_{\mathrm{vo} 2}}{1+\frac{\mathrm{s}}{\omega_{\mathrm{H} 2}}}$
where $A_{\mathrm{vo} 1}$ and A_{vo2} are midband gain of amplifier 1 and 2 respectively. $\mathrm{W}_{\mathrm{H} 1}=2 \pi \times$ $100 \times 10^{3} \mathrm{rad} / \mathrm{sec}$ and $\mathrm{W}_{\mathrm{H} 2}=2 \pi \times 500 \times$ $10^{3} \mathrm{rad} / \mathrm{sec}$ and $\mathrm{S}=j \mathrm{w}$.
(d) What is harmonic distortion ? How even harmonics are eliminated by Push-Pull arrangement of class-A power amplifier ? Explain with circuit diagram:
Q. 4. (a) An amplifier having an open-loop gain of 100 is connected in a negative feedback configuration with a feedback factor of 0.1 , what is the closed loop gain of the amplifier?
(b) Show that bandwidth of an amplifier increases by employing negative feedback.
(c) For the circuit shown in figure (6), $A=-1000$, $\beta=V_{f} / V_{0}=1 / 100, R_{s}=R_{e}=R_{c}=1 \mathrm{k} \Omega$,
$h_{\mathrm{ie}}=1 \mathrm{k} \Omega, \mathrm{h}_{\mathrm{fe}}=100$ and $\mathrm{h}_{\mathrm{re}}, \mathrm{h}_{\mathrm{oe}}$ are negligible. Find (i) V_{i} as a function of V_{s} and V_{f} (Assume that the inverting amplifier input resistance is infinite.), (ii) $A_{v f}=V_{0} N_{s}=$ $A V_{i} / V_{s}$.

Figure (6)
(d) Derive the expression for input and output resistance $\left(R_{\text {if }}\right.$ and $\left.R^{\prime}{ }_{\text {of }}\right)$ with feedback for voltage series topology.
Q. 5. (a) Write Barkhausen criteria for oscillations.
(b) The gain of a forward amplifier is frequency dependent and given by $A=\left[\frac{-9 \times 10^{6}}{j \omega}\right]$. If the feedback fraction is $\left[\frac{6 \times 10^{3}}{\left(3 \times 10^{3}+\mathrm{j} \omega\right)^{2}}\right]$, find the frequency of oscillations:
(c) Draw basic circuit of Wein bridge oscillator and show that the condition for oscillation is $|A| \geq 3$.
(d) Discuss factors which affect the frequency stability of oscillators.

